
HW03 Report
Original JPEG images with different exposure levels (for display purpose only):

af://n0

Step 1. Merge LDR RAW into 32-bit HDR Image

compute_mask Function

Purpose: The function identifies pixels within each image that fall within the specified minimum
(min) and maximum (max) intensity values.

Parameters:

min : The lower threshold for pixel intensity. Pixels with intensity values equal to or greater

than this threshold are considered for inclusion in the mask.

max : The upper threshold for pixel intensity. Pixels with intensity values equal to or less

than this threshold are considered for inclusion in the mask.

images : A list of images. These are the images for which binary masks will be generated.

Process: The function iterates through each pixel of the image. If a pixel’s intensity falls within
the specified min and max range (inclusive), the corresponding position in the mask is set to 1,

indicating that the pixel meets the criteria for inclusion.

af://n9
af://n10

get_fusion_weights Function

Purpose: Calculates weights for each pixel across images at different exposure levels.

Parameters:

images : A list of images at different exposure levels.

medians : The median value of all pixel values for each image.

masks : Typically, masks are used to filter out overexposed or underexposed pixels,

affecting the calculation of weights.

Process: For each image, it calculates weights based on the difference between pixel values and
the median of that image. Pixels closer to the median get higher weights.

raw_exposure_fusion Function

Purpose: Creates an HDR image using a set of images at different exposure levels.

Parameters:

images : A list of images at different exposure levels.

medians : The median value of all pixel values for each image.

exposure_times : Exposure times corresponding to the images in the images list.

mask_percent : Percentage used to compute the mask thresholds, filtering overexposed or
underexposed pixels.

Process:

1. Calculates fusion weights based on the difference between pixel values and their respective
image medians.

2. Applies the equation in the lecture slide: applies weights to each image, combining
logarithmic transformation and exposure time correction to composite the HDR image. This
involves multiplying the logarithmic brightness values of each pixel by its weight, summing
them up, and normalizing based on the sum of weights.

3. Utilized the composited logarithmic brightness image to produce the final HDR image.

af://n26
af://n42

Following the raw exposure fusion process, it's evident that details are meticulously preserved in both
the highlight and shadow regions, enhancing the overall depth and clarity of the image.

Step 2. Demosaic the fused raw data. Save your 32-bit HDR
image into 32- bit *.EXR * file

writeEXR Function

Purpose: Saves image data in the OpenEXR format, a high dynamic range (HDR) image file
format, ensuring the preservation of high fidelity color and brightness information.

Parameters:

image_data : A NumPy array containing the image data to be saved. The function expects
this data to be in a 3-channel format (e.g., RGB).

file_name : The desired path and name of the output EXR file. This specifies where the file
will be saved on the disk.

Process:

1. Converts the image_data to a 32-bit floating point format (np.float32), which is suitable

for storing HDR content in the EXR format.

2. Determines the height, width, and number of channels from the image_data . These

dimensions are crucial for configuring the EXR file's header correctly.

af://n71
af://n72

3. Creates a new EXR file header, specifying the image dimensions and setting up each color
channel (R, G, B) to use 32-bit float values. This step ensures that the EXR file can accurately
represent HDR images.

4. Separates the R, G, and B channels from the image_data , converts each channel into a byte

string, and then maps these channels correctly within the EXR file.

5. Writes the prepared pixel data to the EXR file and closes the file to finalize the saving
process.

From the result, we can observe that:

EXR format supports storing a wider range of brightness and colors than traditional 8-bit or 16-bit
image formats, allowing for more accurate representation of extremely bright and dark scene details.
EXR files can store pixel data in 32-bit full-float numbers, offering extremely high color precision and
dynamic range.

Step 3. Tone Mapping with Bilateral Filter

Tone mapping is conducted in the YUV domain, where the Y channel undergoes bilateral filtering.

af://n100

bilateral_filtering Function

Purpose: Applies bilateral filtering to an image to separate it into base and detail layers, then
recalculates the image intensity using a specified gamma correction factor.

Parameters:

image : The input image to be processed.

range_sigma : The sigma value for the range filter, affecting how the filter considers

differences in pixel values (color/intensity).

spatial_sigma : The sigma value for the spatial filter, influencing how pixel proximity

impacts the filtering.

gamma : The gamma correction factor used for adjusting the intensity of the base layer.

Process:

1. The function first applies a fast bilateral filter to separate the image into a base layer,
preserving edges while smoothing other areas.

2. It computes a detail layer by dividing the original image by the base layer.

3. It then recalculates the new intensity of the image by applying gamma correction to the
base layer and adding back the details.

4. The resulting new intensity image is returned.

compute_new_intensity Function

Purpose: Combines the base and detail layers of an image with gamma correction, then
normalizes and scales the result to fit within a specific intensity range.

Parameters:

base : The base layer of the image, obtained from bilateral filtering.

detail : The detail layer of the image, representing the ratio between the original image

and its base layer.

gamma : The gamma correction factor to be applied to the base layer.

Process:

1. Applies gamma correction to the base layer and adds the detail layer to obtain the gamma-
corrected intensity.

2. Normalizes the gamma-corrected intensity to a 0-1 range.

3. Scales the normalized intensity to the target range (16-235) for display purposes.

4. Rounds the scaled intensity to integers and converts it to 8-bit unsigned integers (uint8),

resulting in the final intensity image.

af://n102
af://n129

fastbilateral2d Function

Purpose: Performs a fast bilateral filter on an image, effectively separating it into base and detail
layers by smoothing the image while preserving edges.

Parameters:

image : The input image to be filtered.

range_sigma : The sigma value for the range filter, dictating the filter's sensitivity to

differences in pixel values.

spatial_sigma : The sigma value for the spatial filter, determining the influence of pixel

proximity on the filtering effect.

Process:

Utilizes OpenCV's bilateralFilter function to apply bilateral filtering to the input image,
smoothing it while maintaining edge integrity. The filtered image (base layer) is then
returned.

From the result, we can observe that:

HDR images capture a wide range of luminance levels, from deep shadows to bright highlights, which
often exceed the display capabilities of standard monitors and printing devices. Tone mapping
compresses this wide range into a narrower range that can be displayed on standard dynamic range
(SDR) devices while still preserving visible details in both dark and bright areas.

af://n154

	HW03 Report
	Step 1. Merge LDR RAW into 32-bit HDR Image
	compute_mask Function
	get_fusion_weights Function
	raw_exposure_fusion Function
	Step 2. Demosaic the fused raw data. Save your 32-bit HDR image into 32- bit *.EXR * file
	writeEXR Function
	Step 3. Tone Mapping with Bilateral Filter
	bilateral_filtering Function
	compute_new_intensity Function
	fastbilateral2d Function

